If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x+4.9x^2-30=0
a = 4.9; b = 7; c = -30;
Δ = b2-4ac
Δ = 72-4·4.9·(-30)
Δ = 637
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{637}=\sqrt{49*13}=\sqrt{49}*\sqrt{13}=7\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7\sqrt{13}}{2*4.9}=\frac{-7-7\sqrt{13}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7\sqrt{13}}{2*4.9}=\frac{-7+7\sqrt{13}}{9.8} $
| 5x+-7x=-4x+1 | | 3(2−3x)=x−4 | | 7p=42p= | | 2h-5=19 | | 14(z+3/)=14z+21 | | 363x=6 | | x^2-39x+280=0 | | 12x+7x=5x-42 | | 4,2x−1,6=2,6x. | | 3x5=729 | | =2(x-3)^6+12 | | 2/x=0,67 | | 10x+17=6x+69 | | (x-1/2)^2-9=0 | | (x-19)^2=0 | | (x-1/2)^2=9 | | x+(-30)=60 | | 6x-11=42 | | 1,2(2x-2,3)+1,5(x-0,8)+1,6=3,5(3x-5,2) | | 10+2a=18 | | 7x=9x-30 | | -12r+4=190 | | x^2+83=0 | | 6x2-7x+8=0 | | 7=x=11 | | 3(3x^2)=42 | | 7+3x=2x÷13 | | 22-2x-8=7+3x | | 8(7x+2,2)-5(12x-1,8)-21=12(2x+0,2)-36 | | 5x+7=x-25 | | 3x-3x=48 | | X+2=2x+14 |